If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10.7x-10.7=0
a = 1; b = 10.7; c = -10.7;
Δ = b2-4ac
Δ = 10.72-4·1·(-10.7)
Δ = 157.29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10.7)-\sqrt{157.29}}{2*1}=\frac{-10.7-\sqrt{157.29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10.7)+\sqrt{157.29}}{2*1}=\frac{-10.7+\sqrt{157.29}}{2} $
| 22(10-c)+15c=199 | | (X-5^2+y+2^2=16 | | 22c(10-c)+15c=199 | | x+0.05=2001.60 | | y=575(1-0.6)3 | | 5v+3+2v=20 | | (1/x-2)+(-12/(x-5)(x-2))=(5/x-2) | | 4x–2=-6 | | w^2-9w-240=0 | | -6+2(x+5)=34 | | 10^6+10^-7=y | | X^2+(y-14)^2=144 | | (X-1)^2+(y-4)^2=34 | | 5x^2-90=10+4x | | -2(x+10)+155=25+30 | | 1/25=5^x | | 10=b^-1 | | 5t-13=4t-1 | | 8-6x+7=6-6x | | 10-5x=3-2x+7-3x | | (X-3)^2+y^2=4 | | 2p^2-16p+26=2 | | 3x^2+18x+22=7 | | 5n^2+20n+22=7 | | 17=7+x/4 | | 5n+20n+22=7 | | 5n^2-10n-33=7 | | 2y-9(18y-7)=3263 | | 5x^2-20x+19=4 | | 215=280-x | | -v+203=271 | | 20(t)=-16t^2+40t+6 |